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Comments on “Analysis and Realization of
L-Band Dielectric Resonator Microwave Filters”

Slawomir Bialas and Adam Abramowicz

The application of a 2-D and 3-D finite element method to estimate
the parameters of the structures with dielectric resonators deserves
special attention. However, working through the above paperl, one

can find that some parts of it have been carelessly written.
In the paper two filters employing dielectric resonators are called

“elliptic filters,” though they cannot be classified into this category.
To explain why, let us briefly present the classification of the elliptic
filters. Such filters exhibit the Czebyshev (equiripple) behavior in both
pass- and stop-bands. The even order elliptic filters have been called
hypothetical, since they cannot be realized as reactive networks with
resistive termination and without ideal transformers, because their

discrimination loss is finite at both zero and at infinite frequency (a
lowpass filter case). However, it is possible to transform them so that,
while they retain their order, they become realizable and still exhibit
Czebyshev behavior in both pass- and attenuation-bands [1]. This can
be achieved by using appropriate frequency transformations that lead
to two types of the even order filters called “wiggle” and “bar” [1].
The bar-type and wiggle-type elliptic filters differ in the number of
the ripples in the pass-band. The odd order elliptic filters along with
the even order wiggle-type and bar-type filters are sometimes called
the true elliptic filters. Equations (1) and (2) give the number of the
transmission zeros v of the realizable (true) elliptic filters for lowpass
filters (transmission zeros at the infinite frequency is not included).

The number of transmission zeros for the bandpass filters must be
doubled:

n–1f)=—
2

n odd (1)

V=?–l
2

n even (2)

where: n is the filter order. Any other types of filters that do not
exhibit the equiripple properties or the number of their transmission
zeros is not equal to that given by (1) or (2) cannot be called “elliptic”.
Their similarity with elliptic filters is often expressed by using the

word “elliptic” in the names like quasi-elliptic and pseudo-elliptic
filters.

The most popular structure in which the microwave elliptic band-
pass filters are realized is the multiple-coupled cavities structure. In
this structure only even order elliptic filters can be realized [2].

Now let us consider filters shown in Fig. 3 and Fig. 16, 17 of the
paper. The Fig. 3 is labelled “5th degree elliptic filter.. .“. As it is
explained above, the odd order elliptic filters cannot be realized in
the multiple-coupled cavities structure, The authors of the subject

paper have given such a label after [3] ([5] in their paper) where
the influence of the Siu’s paper [4] is clear. Siu has presented the
realization of “an 5th order elliptic filter” [4] but has used resonant
couplings, and although he has applied 5 cavities physically (a triple-

mode plus a dual-mode cavity), from the point of view of the filter
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Fig. 1. Frequency response of the filter realizing the normalized coupling
matrix (Table II) in the passband.

Fig. 2. Wide band frequency response of the filter realizing the normalized
coupling matrix (Table II).

synthesis his filter had more than five cavities. Moreover, the structure

presented in Fig. 5 seems to be free from resonant couplings.

According to presented classification, sixth order elliptic bandpass

filters should have four transmission zeros. Wheceas, the Fig. 16

clearly shows one pair of the transmission zeros 6nly, which would

denote the quasi-elliptic filter, Furthermore<’ close scrutiny of the

Fig. 16 and Fig. 17 reveals that, probably by author’s mistake,

figures present two different filters. ,~he resonant frequencies of the

filters differ considerably: 1.4635 MHz in Fig. 16 and 1.336 MHz

in Fig. 17. The midband insertion losses are also different: 0.3 dB

in Fig. 16 and 2 (?) dB in, Fig. 17. It would be interesting to know

if the filter in Fig. 16 has similar wide band response as that in

Fig. 17. What is more, we have found a striking discrepancy between

a matrix of nor alized couplings and obtained fiIter characteristics.
?.

The matrix of}ormahzed couplings is presented in the Table II, while

the Figs. J5’ and 16 display a scheme representation of the filter

structure and the results of the experiment respectively. The values of

the couplings included in the Table II have little in common with the

characteristics presented in Fig. 16. After conducting the simulation

of the couplings matrix specified in the Table II, we have found

characteristics presented in the Fig. 1 and Fig. 2. It is easy to notice

that the main differences as regards the Fig. 16 consist in the values

of the ripple level in the passband and in the stopband. The passband

ripple level presented in Fig, 16 is equal to 0.035 dB (computed from

reflexion losses), while from the normalized couplings matrix we have

found it equal to 0.02 dB as can be seen in Fig. 1. The stopband
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attenuation level presented in Fig. 16 is equal to 50 dB, whereas we

have found it equal to 68 dB! (Fig. 2).

Nevertheless, a method of the synthesis of filters with the reduced
number of transmission zeros is very interesting. The procedure of

tuning such filters may turn out to be easier in relation to the filters

realizing elliptic characteristics especially for the high number of
cavities.
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Reply to Comments on “Analysis and Realization of
L -Band Dielectric Resonator Microwave Filters”

V. Madrangeas, M. Aubourg, P. Guillon, S. Vigneron, and B. Theron

In the above paper [1], we applied the 3-D finite element method
to design and to realize an L-band dielectric resonator filter.

The authors comments concerning the elliptic filters is correct but
in microwave, most people use the word “elliptic” instead of “quasi
elliptic” or “pseudo elliptic,” see for example [2]-[6], . . .

The Fig. 16 in our paper [1], shows the transmission and reflection
responses for the 6 pole filter. In Fig. 17 [1], we present the result
of the wideband frequency sweep for this filter. The measurements
have been realized using a Hewlett-Packard 8510 Network Analyzer.

We first notify that the curve of the Fig. 16 [1] has been drawn after
a calibration procedure. This calibration is indicated by the notation
“C” at the left of the screen. In this case, the marker 1 gives an
in band insertion losses equal to 0,3 dB and a return loss equal to
25 dB. The resonant frequency of the filter is 1.4635 GHz (and not
1.4635 MHz).

On the other hand, no calibration has been realized before mea-
suring SZ1 parameter on the Fig. 17 [1]. There is not “C” at the left
of the screen. In this case, the interconnecting cables and adaptors
(as well as the instrument itself) introduce variations in magnitude
and phase that can mask the actual performances of the device under
test, So, it isn’t possible to calculate the midband insertion losses.
Furthermore, it is better to determinate the resonant frequency and
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the insertion losses on a narrow-band because there are the same

number of measurement points in the sweep on a narrow-band as on

a wide-band.
We must also note that Marker 2-1 (1,336 GHz) on Fig. 17 [1]

indicates the difference of frequency between the Marker 1 (resonant
frequency of the filter) and the Marker 2 (resonant frequency of the
first spurious mode). We would only show here the position of the
nearest spurious mode. So Figs. 16 and 17 [1] represent the responses
of the same filter but on a different band width.

It is fair to find a difference between the matrix of normalized
coupling and obtained filter characteristics for many reasons.

At first, the calculation of the matrix of normrdized coupling are

realized without taking into account the losses.
On top of that, in theory, we have only considered a-coupling

between the resonant elements 1 and 2, 2 and 3, 3 and 4, 4 and 5,

5 and 6, 1 and 4, 3 and 6 (Fig. 15 [1]).
In fact, in practice, there is a coupling between the dielectric

resonator (DR) 1 and the DR 2, and between the DR 3 and the DR 5
for this type of dielectric resonator microwave filters. This unknown
couplings can modify the stop band attenuation level.
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Comments on “Authors’ Response”

Slawomir Bialas and Adam Abramowicz

However, the resonant frequency of the filter presented in Fig. 17

is clearly higher than 1.56 GHz we must agree that the Figs. 16 and
17 in the pape< represent the responses of the same filter and it is
better to determine the resonant frequency and the insertion losses
in the narrow-band.

It quite often happens that microwave people use the word “ellip-

tic” instead of “quasi-elliptic” or “pseudo-elliptic” but this should not
be accepted as the norm. Besides, among suggested papers [2]-[5]
(in the authors’ reply) only in the paper [2] and [3] the word
“elliptic” denotes “quasi-elliptic” or “pseudo-elliptic” filters. In the

The authors are with the Institute of Radioelectronics and Institute of
Electronics Fundamentals, Warsaw University of Technology, Nowowiejska
15/19, 00-665 Warsaw, Poland.

V. Mandrangeas
IEEE Log Number 9208356.

2et al., IEEE Trans. Microwave Theory Tech., vol. 40, no. 1, pp. 120-127,
Jan. 1992.

0018–9480/93$03.00 @ 1993 IEEE


